Peril, Prudence and Planning as Risk, Avoidance and Worry

Peter Dayan

MPI for Biological Cybernetics, University of Tübingen Chris Gagne Yannick Streicher

- -10 for lava
- +5 for reward
- 12.5% error
- 0.9 discount factor

Plan

- risk aversion
- conditional value at risk CVaR in sequential problems
 - pre-committed pCVaR
 - nested nCVaR
- risk averse on-line behaviour
- risk averse off-line planning
 - replay and rumination

the wrong environment

Computational psychiatry

the wrong problem

Decision making and risk

- risk is a critical aspect of decision making
- involves decision-making with respect to uncertain (probabilistic) outcomes
- industries have been designed around it (e.g. insurance markets)
- likely plays a crucial role in psychopathology (e.g. anxiety, mania) – ruminative 'what-ifs'

A useful risk measure from finance...

- caring about worst-case outcomes is natural in medicine, finance, engineering
- perhaps surviving predation for animals

Lower Tail

Modern Risk Measure: Conditional Value at Risk

average case

- worst α case: VaR
 - mean: CVaR

Artzner et al., 1999; Rockafeller & Uryasev, 2000

 $\operatorname{CVaR}_{\alpha}[Z] = E[Z|Z \le \operatorname{VaR}_{\alpha}(Z)]$

CVaR: Conditional Value at Risk

- coherent risk measure
- emphasizes the lower tail
- $\alpha = 1$: the 'regular' mean
- $\alpha \searrow 0$: worst case the minimum
- equivalent to distorted probabilities favouring bad outcomes

Experimental paradigms

• usually:

What about sequential choice?

What about the sequential case? V1: pCVaR

2 3

1

Sequential pCVaR

 $pCVaR^{\pi}_{\alpha_0,x_0}[R] := CVaR_{\alpha_0}[R_0 + \gamma R_1 + \gamma^2 R_2 \dots | X_0 = x_0, \pi]$

- precommitted CVaR: pCVaR
 - privilege a start state: home; nest
 - change α according to the gambler's fallacy
 - if unlucky: α increases $\alpha = 0; 1$ are special
 - if lucky: α decreases
 - either history-dependent evaluation
 - or add the α dimension with transitions tied to ξ

optimal policy

pCVaR in a random walk

uniform policy

With the Lava Pits...

Consistent within a subject

Risk-sensitivity across subjects

α

What about the sequential case? V2: nCVaR

nCVaR for the cliff

pCVaR: $\alpha = 0.05$

nCVaR: $\alpha = 0.05$

state (x)	ŧ	ŧ	÷	•	•	•	Ŧ
	t	Ť	Ť	Ť	Ť	Ť	ŧ
	t	t	t	t	t	•	ŧ
	1 x0	t	t	t	•	•	1
ļ		** r=-1	() r=-1	** r=-1	() r=-1	() r=-1	

state (x)

state (x)

Interim summary

- parametric risk-avoidant behavior
 - from pre-committed pCVaR: with gambler's fallacy
 - more complex inference
 - other forms of risk avoidance (mean variance) also use extra dimension (current return)
 - from nested nCVaR: with excessive risk aversion
 - still need extra dimension to adjust risk aversion
 - psychiatrically
 - 'wrong problem': pathological avoidance
 - stay at home
 - nCVaR makes this worse
 - in stochastic problems, $\alpha = 0$ leads to indifference/helplessness

Risk-avoidant planning

- planning:
 - on-line: model-based reinforcement learning (Monte-Carlo tree search)
 - off-line:
 - use coordinated hippocampal/cortical replay to invert the generative task model
 - evidence in rodents and humans
 - RL:
 - DYNA: Sutton to enable exploration
 - Mattar & Daw synergize with prioritized sweeping (Moore)
 - choose to update based on: product of
 - gain: how much you change your policy based on an update
 - need: how frequently you will visit that state in the future
 - unreasonably: assume optimal calculations in value iteration

Optimal planning for pCVaR

Optimal planning for nCVaR

Discussion

- wrong problem:
 - *optimally* dysfunctional avoidance and rumination from low α and nCVaR
 - action indifference and helplessness from α near 0
 - threshold for improvement in CVaR from planning: meta-control
 - non-parametric Bayesian (infinite) model always another catastrophe around the corner
 - effects on exploration/exploitation trade-off
 - robustness to mis-specification
- wrong solution:
 - ineffective updates for instance from Pavlovian avoidance
 - serotonergic pruning?
 - pCVaR with incomplete adjustment for 'luck' continuity to nCVaR
- wrong environment:
 - over-generalizing representations

Akiti...Mathis...Watabe-Uchida, 2022

Animal Data

Time (Cau)Timeminute/minute(Con)

0.2+	""
0.1 - 0.2	(())
1e-6 - 0.1	(())