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-10 for lava
+5 for reward
12.5% error

0.9 discount factor



Plan

risk aversion

conditional value at risk CVaR in sequential problems

e pre-committed pCVaR
 nested nCVaR

risk averse on-line behaviour

risk averse off-line planning
o replay and rumination



the wrong environment

Computational psychiatry

the wrong problem the wrong solution




Decision making and risk

e risk is a critical aspect of decision making

e involves decision-making with respect to
uncertain (probabilistic) outcomes

e industries have been designed around it (e.g.
insurance markets)

e likely plays a crucial role in psychopathology
(e.g. anxiety, mania) — ruminative ‘what-ifs’




A useful risk measure from finance...

e caring about worst-case outcomes is natural in medicine, finance,
engineering

« perhaps surviving predation for animals

Lower Tail

Possible Returns



Modern Risk Measure: Conditional Value at Risk

e dverage case
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risk preference (a)

Two Views
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CVaR: Conditional Value at Risk
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Experimental paradigms
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What about sequential choice?




What about the sequential case? V1: pCVaR
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Sequential pCVaR

pCVaR] _ [R]:= CVaR, [Ry+ R+ v*Ry. ..

ap.ro-s

Xo = xp, 7|

e precommitted CVaR: pCVaR
 privilege a start state: home; nest

e change a according to the gambler’s fallacy

* if unlucky: a increases a = 0; 1 are special
e if lucky: adecreases
« either history-dependent evaluation

* or add the a dimension with transitions tied to &



dynamic risk preference (a)

pCVaR in a random walk

uniform policy
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With the Lava Pits...




Consistent within a subject
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What about the sequential case? V2: nCVaR

nCVaRa:m

—|_‘:‘ﬁ¥l | |

3 -2 -10 1 2 3 =2 b o 123

S S
&b|s) % (g]s) x
P(b|s)=O.Ng|s) =0.9 P(b|s)=1.01 >(g]s) =0.0
b g b g

CVﬂRaZOJ

-3-2-101 2 3 -3-2-101 2 3 -3-2-10 1 2 3 -3-2-101 2 3




nCVaR for the cliff

state (x)
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Interim summary

e parametric risk-avoidant behavior

o from pre-committed pCVaR: with gambler’s fallacy

« more complex inference

« other forms of risk avoidance (mean variance) also use extra dimension (current return)
« from nested nCVaR: with excessive risk aversion

o still need extra dimension to adjust risk aversion
o psychiatrically

« ‘wrong problem’: pathological avoidance

e stay at home

e nCVaR makes this worse

* in stochastic problems, a = 0 leads to indifference/helplessness



Risk-avoidant planning

e planning:
« on-line: model-based reinforcement learning (Monte-Carlo tree search)
o off-line:
« use coordinated hippocampal/cortical replay to invert the generative task model
« evidence in rodents and humans
e RL:
e DYNA: Sutton — to enable exploration
e Mattar & Daw — synergize with prioritized sweeping (Moore)
e choose to update based on: product of
e gain: how much you change your policy based on an update

« need: how frequently you will visit that state in the future
e unreasonably: assume optimal calculations in value iteration



dynamic risk preference (a)

Optimal planning for pCVaR
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static risk preference (a)

Optimal planning for nCVaR
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Discussion

e wrong problem:
« optimally dysfunctional avoidance and rumination from low a and nCVaR
 action indifference and helplessness from a near 0
o threshold for improvement in CVaR from planning: meta-control
« non-parametric Bayesian (infinite) model — always another catastrophe around the corner
« effects on exploration/exploitation trade-off
« robustness to mis-specification

e wrong solution:
« ineffective updates — for instance from Pavlovian avoidance
e serotonergic pruning?
o pCVaR with incomplete adjustment for ‘luck” — continuity to nCVaR
e Wrong environment:
« over-generalizing representations



Akiti..Mathis..Mathis..Watabe-Uchida, 2022

Not only humanes...
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Animal Data

Minute-to-minute Phase-wise Model Fit
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